Stress distribution in implant retained finger prosthesis: a finite element study.
نویسندگان
چکیده
BACKGROUND Finger amputation may result from congenital cause, trauma, infection and tumours. The finger amputation may be rehabilitated with dental implant-retained finger prosthesis. The success of implant-retained finger prosthesis is determined by the implant loading. The type of the force is a determining factor in implant loading. OBJECTIVE To evaluate stress distributions in finger bone when the loading force is applied along the long axis of the implant using finite element analysis. METHOD The finite element models were created. The finger bone model containing cortical bone and cancellous bone was constructed by using radiograph. Astra Tech Osseo Speed bone level implant of 4.5 mm diameter and 14 mm length was selected. The force was applied to the top of the abutment along the long axis of the implant. RESULTS Finite element analysis indicated that the maximum stress was located at the head of abutment screw. The minimum stress was located in the apical third of the implant fixture. The weakest point was calculated by safety factor which is located in the spongy bone at apical third of the fixtures. Finally, 4.9 times yield stress of spongy bone was needed for the deformation of the spongy bone. CONCLUSION Finite element study showed that when the force was applied along the long axis of the implant, the maximum stress was located around the neck of the implant and the cortex bone received more stress than cancellous bone. So, to achieve long term success, the designers of implant systems must confront biomaterial and biomechanical problems including in vivo forces on implants, load transmission to the interface and interfacial tissue response.
منابع مشابه
مطالعه تنشهای اطراف ایمپلنت به روش اجزای محدود در بریجهای با ساپورت دندان/ایمپلنت در شرایط اتصال سخت و غیرسخت در پروتزهای سمان شونده
Background and Aims: Freestanding fixed partial prosthesis is considered the first choice whenever possible. However, anatomical limitations for implants and other reasons may create situation in which it would be preferable to connect the implants to teeth. A biomechanical dilemma in a tooth/implant-supported system comes from dissimilar mobility. This disparity cause the bridge to function as...
متن کاملBiomechanical 3-Dimensional Finite Element Analysis of Obturator Protheses Retained with Zygomatic and Dental Implants in Maxillary Defects
BACKGROUND The objective of this study was to investigate the stress distribution in the bone around zygomatic and dental implants for 3 different implant-retained obturator prostheses designs in a Aramany class IV maxillary defect using 3-dimensional finite element analysis (FEA). MATERIAL AND METHODS A 3-dimensional finite element model of an Aramany class IV defect was created. Three diffe...
متن کاملEvaluating the impact of length and thread pitch on the stress distribution in dental implants and surrounding bone using finite element method
longevity of osseointegrated implants are intensely influenced by biomechanical factors. Control of these factors prevents mechanical complications, which include fracture of screws, components, or materials veneering the framework. In this study, the impact of length and threads pitch of dental implants on the stress distribution and maximum Von Mises stress in implant-abutment complex and ja...
متن کاملEffect of Coating Materials on the Fatigue Behavior of Hip Implants: A Three-dimensional Finite Element Analysis
This study aims to validate, using finite element analysis (FEA), the design concept by comparing the fatigue behavior of hip implant stems coated with composite (carbon/PEEK) and polymeric (PEEK) coating materials corresponding to different human activities: standing up, normal walking and climbing stairs under dynamic loadings to find out which of all these models have a better performance in...
متن کاملEffect of Abutment Height Difference on Stress Distribution in Mandibular Overdentures: A Three-Dimensional Finite Element Analysis
Background and Aim: Implant-supported overdentures are a treatment option for edentulous patients. One of the important factors in determining the prognosis of overdenture treatment is to control the distribution of stress in the implant-bone and attachment complex. This study assessed the effect of implant abutment height difference on stress distribution in mandibular overdentures. Materials...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of clinical and diagnostic research : JCDR
دوره 7 12 شماره
صفحات -
تاریخ انتشار 2013